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family, its importance for purposes of this review is mini-
mal.). KBs have been dubbed “metabolism’s ugly duck-
ling” because, in the mid-19th century, they were fi rst 
discovered in large quantities in the urine of patients suc-
cumbing to diabetic ketoacidosis. Thus, it is not surprising 
that physicians of the era considered KBs to be toxic by-
products of impaired carbohydrate metabolism. It took 
almost half a century for medical scientists to understand 
that KBs are normal metabolites manufactured by the liver 
in increasing amounts when dietary sources of carbohy-
drate and glucogenic amino acids are in short supply ( 1 ). 
Unfortunately, some physicians still fail to distinguish be-
tween the safe “physiological” hyperketonemia that occurs 
in healthy individuals during fasting or adherence to a ke-
togenic diet (KD), and the pathological, out-of-control hy-
perketonemia associated with insulin-defi cient diabetes. 

 When Owen et al. ( 2 ) reported that during a prolonged 
fast KBs can provide 60% or more of the brain’s daily en-
ergy requirement (thereby sparing  � 80 g/day   of glucose 
that otherwise would have been derived largely from 
breakdown of the body’s limited protein stores), it was fi -
nally acknowledged that, as in Hans Christian Andersen’s 
1843 fairy tale, the creature fi rst thought to be an ugly 
duckling was turning out to be an emerging swan. It be-
came evident that the ketogenic response to starvation is 
an indispensable metabolic adaptation designed by nature 
to preserve strength and prolong life during times when 
food is unavailable ( 3 )  . 

 It is now known that (in nondiabetic individuals), owing 
to the blood’s effi cient buffering capacity, plasma KB 
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responsible for  � 20% of the body’s total resting energy 
expenditure; yet, it represents only about 2% of adult 
body weight. The brain metabolizes  � 120 g of glucose 
per day under conditions of normal glucose availability. 
Studies have shown that most of the glucose-derived en-
ergy entering the brain is used to maintain pre- and 
postsynaptic ion gradients required for neurotrans-
mission and for maintenance of the resting potential of 
neurons ( 11 ). 

 When glucose is in short supply, KBs serve as the brain’s 
principal alternative fuel. However, the brain can only use 
them in quantity if their levels in the plasma substantially 
exceed default concentrations ( � 0.2 mM). In the postab-
sorptive state, for example in the morning upon awakening, 
there exists a mild degree of transient hyperketonemia, 
with plasma ketone levels of 0.1–0.3 mM. These concentra-
tions drop precipitously after ingestion of a mixed meal, 
only to rise again in the next postabsorptive state. In dia-
betic ketoacidosis, plasma concentration of KBs can ex-
ceed 25 mM ( 12 ). 

 The liver forms KBs but lacks the enzymes to use them 
as energy substrates. Transfer of AcAc and  � HB across cell 
membranes (including those of neurons) is enabled by 
MCTs. In the mitochondrial matrix,  � HB is converted to 
AcAc by  � HB dehydrogenase, and the resulting AcAc, to-
gether with any AcAc that has entered the matrix as such, 
is then transformed to AcAc-CoA by oxoacid-CoA transfer-
ase. AcAc-CoA is then converted to acetyl-CoA by aceto-
acetyl-CoA thiolase, with the resulting acetyl-CoA units 
entering the Krebs (tricarboxylic acid  ) cycle. In the cycle, 
they undergo oxidative degradation, with reduction of 
the electron carriers NAD+ and fl avine adenine dinucleo-
tide (FAD) to NADH and FADH 2 . NADH and FADH 2  donate 
electrons to the protein complexes I and II of the electron 
transport chain (ETC). Energy derived from the transfer 
of electrons along the ETC to oxygen (O 2 ) is used by the 
electron transport system to pump protons (H + ) into the 
mitochondrial intermembrane space, thereby generating 
a gradient across the inner mitochondrial membrane 
(proton motive force) that provides energy to regenerate 
ATP from ADP and inorganic phosphate  . The role of mi-
tochondrial dysfunction in neuronal degeneration has 
been reviewed by Schon and Manfredi ( 13 ). 

 KB: SOURCE OF ENERGY FOR BRAIN, HEART, 
AND MUSCLE 

 There is evidence that the whole brain uses energy from 
KBs as a function of the blood (plasma) concentration, as 
shown in   Table 1  .   

 In the human brain, the transport system for KBs (unlike 
that for glucose) remains relatively intact with advancing 
age. Certain MCT isoforms are well expressed in neurons 
(MCT2), astrocytes (MCT4), and brain capillaries (MCT1). 
When glucose utilization is impaired in neurodegenerative 
diseases, transport of KBs into the brain appears to be less 
affected and their utilization for energy by the brain mito-
chondria is not impeded by such factors as local insulin 

levels can increase to 6–8 mM during a prolonged fast 
without giving rise to clinically hazardous acidosis ( 4 ). 

 PHYSIOLOGY OF KETOGENESIS 

 Four physiological facts lie at the root of the ketogenic 
adaptation:  i ) the body’s small reserve supply of preformed 
carbohydrate (largely as glycogen),  ii ) the body’s limited 
protein stores,  iii ) the relative plenitude in human adipose 
tissue of stored TG   [triacylglycerol (TAG)], and  iv ) the 
inability of long-chain FAs ( � C12) to cross the blood-
brain barrier (BBB). Given these considerations, the evo-
lutionary advantage of having a TAG-derived metabolite 
capable of crossing the BBB and nourishing the brain dur-
ing times when food is unavailable is self-evident. 

 In a 70 kg male of normal body composition, the amount 
of fuel reserves in the form of TAG is  � 12 kg. Muscle pro-
tein is  � 6 kg, while the carbohydrate reserves (glycogen) 
in liver and muscle are  � 100 g and  � 400 g, respectively 
( 5 ). Glucose is the brain’s usual fuel source. After an over-
night fast, owing to increased glucagon secretion and di-
minished insulin release, amplifi ed mobilization of FFAs 
from adipose tissue is associated with their increased utili-
zation by muscle and enhanced hepatic ketogenesis. How-
ever, at this early stage of carbohydrate privation, while 
plasma KBs are still low, the brain remains heavily depen-
dent on glucose. 

 During total caloric starvation, the only source of new 
glucose is that synthesized from the glycerol released from 
adipose tissue together with FFA and from glucogenic 
amino acids derived from the breakdown of stored pro-
tein. With continued starvation, gluconeogenesis is cur-
tailed, and the liver shifts acetyl-CoA to KB synthesis (see 
below). During glucose scarcity, the astrocytes also may 
contribute to KB formation. Astrocytes in culture have 
been shown to produce KBs from FAs ( 6 ) and from leu-
cine ( 7 ). The mechanism by which the astrocytes synthe-
size KBs is very similar to that of cultured hepatocytes. In a 
review of KB synthesis in the brain, it was suggested that 
production of KBs by astrocytes contributes to the survival 
of neurons subjected to hypoxia ( 8 ). Most studies in astro-
cyte ketogenesis come from cell culture experiments, and 
the extent of KB formation by astrocytes in vivo remains to 
be determined. Nevertheless, the major determinants of 
cerebral KB metabolism are the prevailing plasma KB con-
centrations and availability of suitable monocarboxylic 
acid transporter (MCT) isoforms ( 9 ). 

 Studies based on positron emission tomography (PET) 
imaging in rats found a 7- to 8-fold enhancement of brain 
uptake of ketones during a KD or fasting ( 10 ). 

 THE BRAIN’S HIGH ENERGY REQUIREMENT 

 Usually, the brain obtains its fuel mainly from glucose/
pyruvate-derived substrate, which is almost completely oxi-
dized in the mitochondria, generating CO 2 , water, and high 
energy phosphate bonds (principally ATP). The brain is 
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release was obtained from dog studies in which infusions 
of KBs produced plasma KB concentrations of  � 3 mM ( 18 , 
 19 ,  21   ). The relatively brief time frame in which the infu-
sion experiments took place is very different from the slow 
rate at which metabolic changes occur during the develop-
ment of fasting-induced hyperketonemia. During a pro-
longed fast, blood glucose plateaus at a lower than usual 
level, with an associated reduction in insulin release ( 20 ). 

 Nevertheless, a KB-generated negative feedback effect 
could explain the fall in arterial glucose concentration; 
the gradual increase, followed by a leveling off, of plasma 
FFA levels; and the stabilization of plasma KB observed 
over time in fasting individuals. Reducing the quantity of 
FFA released from adipocytes decreases FFA traffi c through 
the liver. Reduction in rate of FFA entry into the liver 
would be expected to cause a decrease in hepatic KB for-
mation, in effect, closing the negative feedback loop that 
prevents plasma KBs from rising to unsafe levels during 
starvation. Moreover, hyperketonemia per se may limit 
FA release from adipose tissue. However, the presence of 
insulin may be necessary for this effect ( 21 ). 

 THERAPEUTIC USES OF KBs 

 Traditionally, physicians have been taught to fear keto-
sis because the marked hyperketonemia that results from 
insulin defi ciency can cause severe acidosis and death in 
individuals with type 1 diabetes. Thus, in their description 
of the potential therapeutic uses of KBs, Veech et al. ( 14, 
22 ) emphasize that, in marked contrast to the clinical pic-
ture in diabetic ketoacidosis, mild to moderate hyperketo-
nemia (up to  � 8 mM) can materially prolong survival 
during periods of caloric starvation. As glucose availability 
diminishes, KBs manufactured in the liver from FAs mobi-
lized from adipose tissue become major sources of energy 
for muscle, heart, and brain ( 23 ). 

 Veech et al. ( 14, 22 ) described “clinical maneuvers” for 
readily increasing blood levels of  � HB to 2–8 mM, concen-
trations similar to those produced by starvation or various 
KDs. To achieve this objective, they recommended use of 
small synthetic, digestible KB polymers (including dimers) 
or esters of  � HB administered orally at 100–150 g/day   in 
divided doses. The goals were to  i ) obtain relatively high 
plasma KB levels, which might enhance the clinical effec-
tiveness of KB therapy in some cases; and  ii ) provide a more 
effi cient source of energy per unit oxygen consumed for 
the treatment of certain types of heart failure and neurode-
generative diseases characterized by focal brain hypome-
tabolism, such as Parkinson’s disease (PD) and AD. The 
authors also suggested that the ability of  � HB to reduce 
NADP+ might be important in decreasing the oxidative dam-
age associated with various kinds of metabolic stress ( 14 ). 

 KBs ARE A “HIGH-OCTANE” FUEL FOR THE BODY 

 The effect of adding insulin or KBs (4 mM) to a buffer 
containing 10 mM of glucose in a perfused rat heart prep-
aration was studied by Kashiwaya et al. ( 24 ) and by Sato 

resistance that, by interfering with the neuronal fuel sup-
ply, may contribute to the progressive nerve cell damage 
observed in Alzheimer’s disease (AD) ( 1, 5, 14–16 ). 

 The central actions of  � HB have been reviewed by Lae-
ger et al. ( 17 ). These include its sources; its metabolism 
during starvation and cellular signaling; its effects on food 
intake; its role in ATP production, energy metabolism, 
and thermogenesis; its neuroprotective effects; and its in-
fl uence on pituitary hormone release. The authors cite 
studies indicating that all the enzymes needed for KB oxi-
dation, such as  � HB dehydrogenase, 3-ketoacid CoA trans-
ferase, and acetyl-CoA thiolase, are present in the brain. 

 REGULATION OF PLASMA KB CONCENTRATIONS 

 In the fi rst few days of a prolonged fast, while the body’s 
carbohydrate stores are being rapidly depleted, the liver 
accelerates its manufacture of KBs from FFA released in 
increasing amounts from adipocytes. In the absence of di-
etary carbohydrate, and as depletion of the body’s stored 
glycogen continues, the liver also increases its production 
of new glucose. Krebs cycle intermediates, notably oxalo-
acetate, are diverted to gluconeogenesis, which entails 
conversion in the liver of pyruvate derived from the car-
bon skeletons of glucogenic amino acids to glucose. Glycerol 
released from adipocytes along with FFA is also converted 
to glucose in the liver. 

 At the same time, insulin production tends to wane as 
glucose availability diminishes. Reduced concentrations of 
circulating insulin result in attenuation of insulin’s inhibit-
ing effect on FFA/glycerol release. At this point, because 
much of the limited supply of oxaloacetate is being used 
for gluconeogenesis, metabolism in the Krebs cycle of FA-
derived acetyl-CoA is slowed, and the resulting accumula-
tion of the two-carbon units is then redirected to production 
of KBs for export into the systemic circulation. 

 To promote regeneration of oxaloacetate and thereby 
allow restoration of earlier levels of gluconeogenesis, the 
intrahepatic accumulation of acetyl-CoA apparently stimu-
lates pyruvate carboxylase activity, resulting in conversion 
of more pyruvate to oxaloacetate, a key intermediate in 
both the Krebs cycle and the gluconeogenic process. 

 As the liver increases its KB output, the plasma total KB 
concentration rises gradually to 5–7 mM, or even slightly 
higher, depending in considerable part on the duration of 
the fast. In individuals whose islet  � -cells are intact and 
functional, an elevated plasma ketone concentration can 
directly stimulate the  � -cells to increase insulin secretion. 
However, it should be kept in mind that much of the evi-
dence for hyperketonemia-induced enhancement of insulin 

 TABLE 1. Proportion of brain energy metabolism supported by KB, 
as a function of plasma KB concentration (mM) ( 2 ,  3 ,  9 ,  10 ,  41 )   

Plasma KB Concentration  Proportion of Brain Energy

0.3–0.5 mM (12–24 h fast) 3–5%
1.5 mM (2–3 day fast) 18%
5 mM (8 day fast) 60%
7 mM ( � 20 day fast) >60%
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 Factors impeding glucose utilization by the brain may 
contribute to, or precipitate, AD neuropathology. This 
possibility is strengthened by evidence that diminished 
glucose utilization can be present well in advance of mea-
surable cognitive decline ( 29 ). 

 Studies have shown that certain glucose transporters 
(GLUTs) in the brain (GLUT 1 and GLUT 2) may be di-
minished signifi cantly in the AD brain ( 34 ). In addition, 
there is evidence that the concentration of GLUT 3, the 
principal neuronal GLUT, is diminished in the brains of 
AD patients ( 39 ). A decrease in GLUTs also correlates 
with abnormal hyperphosphorylation of tau in AD ( 40 ). 
Such GLUT defi ciencies presumably contribute to the 
impaired glucose metabolism implicated in neuronal 
degeneration. 

 There is preliminary evidence that, unlike glucose, 
transport and metabolism of KBs are not diminished in 
the AD brain ( 41, 42 ). This fi nding underlines the impor-
tance of developing a safe, simple, and reliable way to pro-
vide the brain with KBs as an alternative fuel to glucose. 
The subject of brain fuel metabolism in aging and AD has 
been extensively reviewed by Cunnane et al. ( 41 ). In a 
more recent communication, Castellano et al. ( 42 ) re-
ported that at the same time a diminished brain glucose 
utilization in AD could be demonstrated, ketone uptake 
was unchanged. In recent years, extensive evidence has ac-
cumulated suggesting that regional hypometabolism 
within the brain may be a root cause of cognitive decline 
in sporadic AD ( 15 ). For example, carriers of one copy of 
the APOE- � 4   allele (a situation that enhances risk of devel-
oping AD) exhibit abnormally low rates of glucose me-
tabolism bilaterally in the posterior cingulate, parietal, 
temporal, and prefrontal cortex ( 15 ). Under normal con-
ditions, the energy used by the adult human brain is derived 
almost exclusively from glucose ( 42, 43 ). In individuals 
with an increased risk of developing AD, glucose hypome-
tabolism (manifested by a reduced cerebral metabolic rate 
for glucose) may occur in cognition-critical parts of the 
brain decades before symptoms of dementia become man-
ifest and may precede intra- and extraneuronal deposition 
of abnormal proteins. These fi ndings suggest that neuro-
nal energy privation may be an important contributor to 
the decline in cognitive performance exhibited by patients 
with early AD. Early support for the concept that the AD 
brain may retain its ability to use KBs for energy even when 
glucose utilization is impaired was obtained by feeding a 
mildly ketogenic (0.5–0.8 mM) medium-chain TG (MCTG), 
tricaprylin, to AD patients. Even at such relatively low 
plasma KB concentrations, a modest rise in cognitive per-
formance occurred transiently in a subset of the AD co-
hort under examination. Yet, despite the unspectacular 
nature of the improvement that occurred, the studies 
reviewed were well designed and the cognitive improve-
ment measured following MCTG ingestion was statistically 
signifi cant ( 15 ). 

 In a mouse model of AD, the feeding of a KME (com-
posed of  D - � HB and  R -1,3-butanediol) as 21.5% of dietary 
calories was associated with lessening in anxiety and im-
provement in performance on learning and memory tests. 

et al. ( 25 ). The addition of either insulin or ketones in-
creased the effi ciency of the working heart (hydraulic 
work/energy from O 2  consumed) by 25%. The addition of 
both insulin and KBs in combination increased heart effi -
ciency by 36%. The authors concluded that moderate hy-
perketonemia ( � 4 mM) may compensate for defects in 
mitochondrial transduction associated with insulin defi -
ciency, local glucoprivation, or mitochondrial senescence. 
Later work by the same group showed that moderate hy-
perketonemia following ingestion of the 1,3-butanediol 
monoester of  � HB [ketone monoester (KME)] signifi -
cantly improved the endurance of rats on a treadmill and 
also the physical performance of competing university ath-
letes ( 26 ). 

 AD 

 Possible triggering role of mitochondrial dysfunction 
 Mitochondrial dysfunction has been implicated in the 

etiology of mild cognitive impairment and AD ( 27 ). Such 
dysfunction, which may be related to diminished energy 
production from mitochondrial glucose/pyruvate oxida-
tion, potentiates the pathological intraneuronal (and later 
extracellular) deposition of amyloid- �  (Α � ) and hyper-
phosphorylated tau. The mechanism for the mitochon-
drial dysfunction is not certain. However, several possible 
explanations have been proposed and are discussed in 
recent reviews ( 28, 29 ). Manifestations of impaired mito-
chondrial function include a decrease in oxidative phos-
phorylation and ATP synthesis, increased superoxide 
anion production, evidence of oxidative damage, inhibi-
tion of mitochondrial pyruvate dehydrogenase complex 
activity, and functional impairment in the mitochondrial 
ETC, particularly involving cytochrome c oxidase. Mag-
netic resonance spectroscopy (MRS) has been used to ac-
cess neuronal mitochondrial metabolism in healthy elderly 
and young volunteers ( 27 ). MRS studies in these two 
groups revealed that, in the aging subjects, there was a re-
duction in neuronal and glial mitochondrial metabolism 
compared with the healthy young subjects. In a mouse 
model of AD, Chou et al. ( 30 ) found that early dysregula-
tion of the mitochondrial proteome precedes the develop-
ment of plaque and tangle pathologies. A number of 
mitochondrial proteins were downregulated in the cere-
bral cortices of these mice, notably in complexes I and IV 
of the oxidative phosphorylation system. Other studies 
have provided strong evidence that the impaired glucose 
metabolism in certain parts of the brain, which is charac-
teristic of AD, is related to mitochondrial dysfunction 
( 31–37 ). In AD, changes in glucose metabolism in cogni-
tion-associated parts of the brain have been detected by 
PET imaging with 2-[ 18 F]fl uoro-2-deoxyglucose (FDG) de-
cades before the appearance of typical AD dementia ( 38 ). 
Four apparently normal individuals with FDG-PET evi-
dence of reduced glucose utilization in cognition-related 
brain sites were followed for 9–19 years to the onset of 
clinical symptoms of dementia and, subsequently, to post-
mortem confi rmation of the diagnosis of AD. 
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 Because a reduction in complex I activity and impaired 
mitochondrial function had been reported in the brain 
and other tissues of patients with PD ( 53, 54 ), Tieu et al. 
( 55 ) reasoned that, inasmuch as the brain can utilize KB 
for energy via mitochondrial complex II, KBs might pro-
tect against MPTP induction of parkinsonism in mice. In-
deed, infusion of  � HB into mice was found to confer 
protection against the dopaminergic neurodegeneration 
and motor defi cits induced by MPTP. 

 In a tissue culture study of rat neurons,  � HB protected 
hippocampal neurons from A �  1–42 toxicity and mesence-
phalic neurons from MPTP toxicity. These fi ndings sug-
gest that KBs have the potential of preventing, or possibly 
treating, both AD and PD ( 56 ). In a later recent study, 
Cheng et al. ( 57 ) reported, in a rat model of PD, that a KD 
protected dopaminergic neurons of the SNpc against the 
neurotoxicity of 6-hydroxydopamine. 

 Recently, oral administration of glyceryl-tris-3-hydroxy-
butyrate (3GHB), the TG of  � HB, was found to exert an 
extended neuroprotective action against MPTP-induced 
neuronal destruction in the SNpc of mice. It was shown 
that 3GHB protects these neurons in a dose-dependent 
manner ( 48 ). The study’s authors suggested that this pro-
tection might be mediated via inhibition of HDAC. They 
concluded that this new ketone ester (KE), 3GHB, repre-
sented a promising preventive and/or therapeutic strategy 
for a range of pathological conditions affecting the brain, 
including PD and AD ( 48 ). 

 Another study in mice demonstrated that  � HB inhibits 
HDAC in vitro and in vivo ( 47 ). The in vivo studies in-
volved producing hyperketonemia (1.5 mM) in mice by 
means of a 24 h fast, caloric restriction (0.6 mM), or infu-
sion of buffered  � HB (1.2 mM). A positive correlation was 
observed between serum  � HB level and histone acetyla-
tion, promoted by the KB-induced inhibition of HDAC. 
Treatment of mice with  � HB also conferred signifi cant 
protection against oxidative stress. Other studies indicate 
that KBs are protective against oxidative stress in neocorti-
cal neurons ( 58 ). They also help protect against the neu-
ronal synaptic dysfunction induced by respiratory complex 
inhibitors ( 59 ). 

 EPILEPSY 

 The anticonvulsant effect of fasting has been known for 
centuries ( 1 ). The KD for the treatment of epilepsy, which 
mimics the metabolic effects of fasting, was fi rst conceived 
in 1921 by Wilder ( 60 ). In terms of energy distribution, 
the original KD was 90% fat,  � 8% protein, and  � 2% 
carbohydrate. 

 The very high-fat, very low-carbohydrate, low-protein 
KD can produce rises in plasma LDL cholesterol, uric acid, 
and FFAs. Occasionally, the KD may be associated with an 
increased incidence of nephrolithiasis and other serious 
complications ( 1 ). Some of these adverse effects can be 
prevented by guarding against chronic dehydration. Hy-
perlipidemia can be avoided in most cases by boosting the 
proportion in the diet of polyunsaturated ( � 6 and  � 3) 

Moreover, the mice fed the KME exhibited reduced A �  
peptide deposition in the hippocampus and amygdala and 
reduced levels of hyperphosphorylated tau deposits in the 
same areas and in the cortex ( 44 ). 

 Histone acetylation and deacetylation 
 During the past 10 years, a number of studies have ad-

dressed the phenomenon of histone acetylation and 
deacetylation and the role of these processes in cognitive 
impairment and AD. For example, degradation of histone 
acetylation is associated with age-dependent memory im-
pairment in mice. In contrast, restoration of histone acety-
lation leads to recovery of cognitive performance ( 45 ). 
More recent studies suggest that there is an urgent need to 
develop additional selective histone deacetylase (HDAC) 
inhibitors ( 46 ). 

 Recently,  � HB was found to inhibit HDACs 1, 3, and 4 
at concentrations of 5.3, 2.4, and 4.5 mM, respectively. 
Thus, millimolar concentrations of  � HB appeared to in-
crease histone acetylation via inhibition of HDACs. More-
over, the same study provided evidence that  � HB exerts 
a suppressive effect on oxidative stress ( 47 ). Inhibition 
of HDAC was also shown in mice that were protected 
from 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-
induced   dopaminergic damage by feeding a TG of 
 � HB ( 48 ). 

 The human and rodent genome encodes for 11 HDAC 
proteins that are divided into four classes (HDAC I–IV). 
There is evidence that inhibition of HDACs 1–3 (class I) 
reverses memory dysfunction in a mouse model of AD 
( 49 ). Agents reported to inhibit HDAC include sodium 
butyrate, trichostatin A, suberoylanilide hydroxamic acid, 
and sodium phenylbutyrate.  � HB also qualifi es as an 
HDAC inhibitor ( 47, 48 ). Most HDAC inhibitors infl uence 
the activities of the HDAC isoforms and classes nonselec-
tively, and the term “pan-inhibitor” has been used to dis-
tinguish them from inhibitors that are class selective or 
isoform selective. 

 PD 

 Although the pathogenesis of sporadic PD remains 
unresolved, numerous studies suggest that, at the least, 
impairment of mitochondrial function involving the sub-
stantia nigra pars compacta (SNpc) plays an important 
contributory role ( 50, 51 ). In 1983, Langston et al. ( 52 ) 
reported that four persons developed marked parkinson-
ism after taking an illicit drug intravenously. The drug, 
4-propyloxy-4-phenyl-N-methylpiperidine (MPPP), was a 
meperidine (Demerol®) analog. A contaminant (and un-
wanted side product) resulting from apparently careless 
MPPP manufacture, MPTP, was found to be the likely cul-
prit. It was the MPTP, after being oxidized in the brain to 
methylphenylpyridine, that presumably caused selective 
destruction of dopaminergic neurons in the SNpc, giving 
rise to the human PD-like syndrome described by Langs-
ton et al. ( 52 ). Subsequently, MPTP has been used exten-
sively to produce animal models of PD. 
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 � HB (>3 mM), AcAc (>3 mM), and acetone ( � 0.7 mM). 
The KE had no effect on blood glucose, and the ketone-
mia was induced despite the fact that the rats had been fed 
a standard carbohydrate-containing diet. 

 KEs 

 Conversion of KBs to KEs eliminates KB acidity, making 
the KEs suitable vehicles for the delivery of KBs to the 
blood circulation via the gastrointestinal route. Ingestion 
of KE can directly increase plasma KBs to levels within the 
range achieved during fasting. The degree of KB elevation 
attained is readily controlled by the dose size ( Fig. 1 ). 

 Two KEs are known to be under current study:  a ) 1,3-bu-
tanediol monoester of  � HB (KME) ( 77, 79–84 ) and  b ) 
3GHB ( 48, 85, 86 ). Studies have demonstrated that orally 
or intravenously administered 1,3-butanediol or glycerol 
esters of  � HB are safe and well tolerated in animals ( 80, 
86 ), and that the orally administered 1,3-butanediol mono-
ester is also safe and well tolerated in humans ( 79 ). 

 Like other FA esters, KEs described herein are hydro-
lyzed in the intestine into ketoacids and the esterifying 
polyol (1,3-butanediol or glycerol). Early studies on poly-
ols such as 1,2-, 1,4-, and 2,3-butanediols revealed that they 

and monounsaturated FAs ( 61 ). Also, incorporation of 
MCTG into the KD may be helpful in formulating more 
tolerable ketogenic regimens for the long-term treatment 
of drug-resistant epilepsy ( 62–65 ). 

 KDs have also been found therapeutically effective in 
approximately two-thirds of 104 patients with infantile 
spasm ( 66 ). In another study, at 1–3 months after the ini-
tiation of the KD in 26 patients with infantile spasm, 46% 
had a >90% reduction in symptoms ( 67 ). 

 The mechanism responsible for the benefi cial effect of 
the KD in epilepsy is not known. Several explanations have 
been proposed:  i ) reduction in neural excitability,  ii ) 
changes in energy availability, and  iii ) direct anticonvul-
sion action. Another mechanism for the antiseizure action 
of the KD, suggested by Yudkoff et al. ( 68 ), pertains to 
decreased availability of excitatory neurotransmitters 
(aspartate and glutamate) and increased availability of 
the inhibitory neurotransmitters [ � -aminobutyric acid 
(GABA)], via stimulation of glutamic acid decarboxylase, 
which, in turn, increases GABA production from gluta-
mate. Many studies have contributed in a variety of ways to 
our understanding of the benefi cial effect of KDs on epi-
lepsy ( 60, 62, 69–76 ). However, despite the abundance of 
hypotheses, the basis for the antiseizure action of KBs re-
mains unclear. 

 Because the new KEs (see   Fig. 1  )  can elevate plasma KBs 
to concentrations comparable to those achieved during 
prolonged adherence to a KD, without the concurrent 
need to change the composition of the habitual diet, it 
should now be possible to determine conclusively whether 
hyperketonemia has an antiseizure effect in epileptic pa-
tients independent of any associated dietary change. 

 A recent study of brain metabolism in normal Wistar 
rats fed a KME (1,3-butanediol monoester of  � HB) may 
provide a possible explanation for the antiepileptic effect 
of KDs. Animals fed KME as 28% of daily calories for 14 
days had their brain metabolites measured after removal 
of their brains by freeze blowing. The KME-supplemented 
animals had elevated blood KB levels in the 3.5 mM range 
and had a 2-fold decrease in food intake despite lowered 
plasma glucose, insulin, and leptin. The authors attrib-
uted the diminished food intake to increased malonyl-
CoA and uncoupling proteins 4 and 5. Feeding the KME 
diet resulted in a signifi cant decrease in both  L -glutamate 
and GABA. This observation provides additional support 
for the notion that the antiepileptic effect of KDs may re-
sult from the reduction in the excitatory amino acid gluta-
mate associated with their use ( 77 ). 

 The anticonvulsant effect of sustained hyperketonemia 
has also been studied in a rat model of CNS oxygen toxic-
ity seizures ( 78 ). In an attempt to mimic the sustained 
therapeutic hyperketonemia ( � 7 mM) that can be 
achieved by means of a strict KD, a single oral dose (10 g/
kg) of a KE ( R , S -1,3-butanediol AcAc diester) was adminis-
tered to rats over a 30 min period before placing them in 
a seizure-inducing hyperbaric oxygen chamber. The KE 
treatment was associated with a substantial delay in occur-
rence of the CNS oxygen toxicity-induced seizures. Inges-
tion of the KE resulted in rapid and sustained elevations of 

  Fig.   1.  Changes in circulating  D - � ΗΒ and AcAc concentrations 
for 24 h following ingestion of a single dose of the ketone monoes-
ter. Note that concentrations refl ect dose size. Reproduced from 
Clarke et al. ( 79 ).   
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drop in cellular energy followed by an increase in intracel-
lular Na +  and Ca 2+ , excessive release of neurotransmitters, 
and apoptosis. 

 If the foregoing scenario is credible, it would seem criti-
cally important to test whether the hyperketonemia 
readily achievable by ingestion of a Food and Drug Admin-
istration-approved KE can prevent or delay the occurrence 
of neuronal energy privation (and its pathological conse-
quences) in individuals in whom preclinical AD or PD can 
be diagnosed. 

 It is also crucial to determine whether KE treatment per 
se is effective in the prevention and control of epileptic 
seizures.  
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